Combines multiple signals for better reranking:
Methods
Method new()
Create a new AdvancedReranker
Usage
AdvancedReranker$new(
semantic_weight = 0.4,
bm25_weight = 0.3,
coverage_weight = 0.2,
position_weight = 0.1,
sentence_embedder = NULL
)
Arguments
semantic_weight
Weight for semantic similarity (0-1)
bm25_weight
Weight for BM25 score (0-1)
coverage_weight
Weight for query term coverage (0-1)
position_weight
Weight for position bias (0-1)
sentence_embedder
Optional SentenceEmbedder for semantic scoring
Method set_embedder()
Set sentence embedder
Usage
AdvancedReranker$set_embedder(embedder)
Arguments
embedder
SentenceEmbedder object
Method rerank()
Rerank results
Usage
AdvancedReranker$rerank(
query,
query_vector = NULL,
results,
doc_vectors = NULL,
limit = 10
)
Arguments
query
Query text
query_vector
Query embedding vector
results
List of result objects with id, text, score
doc_vectors
Matrix of document vectors (optional)
limit
Number of results to return
Returns
Reranked list of results
Method learn_weights()
Learn optimal weights from relevance judgments
Usage
AdvancedReranker$learn_weights(
queries,
results_list,
relevance_list,
iterations = 100
)
Arguments
queries
Character vector of queries
results_list
List of result lists (one per query)
relevance_list
List of relevance scores (1=relevant, 0=not)
iterations
Number of optimization iterations
Method clone()
The objects of this class are cloneable with this method.
Usage
AdvancedReranker$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.