A unified wrapper for several "OpenAI - compatible" chat - completion APIs (OpenAI, Groq, Anthropic, DeepSeek, Alibaba DashScope, GitHub Models). Accepts either a single `prompt` **or** a full `messages` list, adds the correct authentication headers, retries on transient failures, and returns the assistant's text response. You can toggle informational console output with `verbose = TRUE/FALSE`. If the chosen `model` is no longer available, the function stops early and suggests running `list_models("<provider>")`.
Arguments
- prompt
Character. Single user prompt (optional if `messages`).
- messages
List. Full chat history; see *Messages*.
- provider
Character. One of `"openai"`, `"groq"`, `"anthropic"`, `"deepseek"`, `"dashscope"`, or `"github"`.
- model
Character. Model ID. If `NULL`, uses the provider default.
- temperature
Numeric. Sampling temperature (0 - 2). Default `0.7`.
- max_tokens
Integer. Max tokens to generate. Default `1000`.
- api_key
Character. Override API key; if `NULL`, uses the environment variable for that provider.
- n_tries
Integer. Retry attempts on failure. Default `3`.
- backoff
Numeric. Seconds between retries. Default `2`.
- verbose
Logical. Whether to display informational messages (`TRUE`) or suppress them (`FALSE`). Default `TRUE`.
- endpoint_url
Character. Custom endpoint; if `NULL`, a sensible provider - specific default is used.
- github_api_version
Character. Header `X - GitHub - Api - Version`. Default `"2022 - 11 - 28"`.
- anthropic_api_version
Character. Header `anthropic - version`. Default `"2023 - 06 - 01"`.
- ...
Extra JSON - body fields (e.g. `top_p`, `stop`, `presence_penalty`).
- .post_func
Internal. HTTP POST function (default `httr::POST`).
Messages
* `prompt` - character scalar treated as a single *user* message. * `messages` - list of lists; each element must contain `role` and `content`. If both arguments are supplied, the `prompt` is appended as an extra user message.
Examples
if (FALSE) { # \dontrun{
## 1. Listing available models
# List all providers at once
all_mods <- list_models("all")
str(all_mods)
# List OpenAI-only, Groq-only, Anthropic-only
openai_mods <- list_models("openai")
groq_mods <- list_models("groq")
anthropic_mods<- list_models("anthropic", anthropic_api_version = "2023-06-01")
## 2. Single-prompt interface
# 2a. Basic usage
Sys.setenv(OPENAI_API_KEY = "sk-...")
res_basic <- call_llm(
prompt = "Hello, how are you?",
provider = "openai"
)
cat(res_basic)
# 2b. Adjust sampling and penalties
res_sampling <- call_llm(
prompt = "Write a haiku about winter",
provider = "openai",
temperature = 1.2,
top_p = 0.5,
presence_penalty = 0.6,
frequency_penalty = 0.4
)
cat(res_sampling)
# 2c. Control length and retries
res_len <- call_llm(
prompt = "List 5 uses for R",
provider = "openai",
max_tokens = 50,
n_tries = 5,
backoff = 0.5
)
cat(res_len)
# 2d. Using stop sequences
res_stop <- call_llm(
prompt = "Count from 1 to 10:",
provider = "openai",
stop = c("6")
)
cat(res_stop)
# 2e. Override API key for one call
res_override <- call_llm(
prompt = "Override test",
provider = "openai",
api_key = "sk-override",
max_tokens = 20
)
cat(res_override)
# 2f. Factory interface for repeated prompts
GitHubLLM <- call_llm(
provider = "github",
max_tokens = 60,
verbose = FALSE
)
# direct invocation
story1 <- GitHubLLM("Tell me a short story")
cat(story1)
## 3. Multi-message conversation
# 3a. Simple system + user
convo1 <- list(
list(role = "system", content = "You are a helpful assistant."),
list(role = "user", content = "Explain recursion.")
)
res1 <- call_llm(
messages = convo1,
provider = "openai",
max_tokens = 100
)
cat(res1)
# 3b. Continue an existing chat by appending a prompt
prev <- list(
list(role = "system", content = "You are concise."),
list(role = "user", content = "Summarize the plot of Hamlet.")
)
res2 <- call_llm(
messages = prev,
prompt = "Now give me three bullet points."
)
cat(res2)
# 3c. Use stop sequence in multi-message
convo2 <- list(
list(role = "system", content = "You list items."),
list(role = "user", content = "Name three colors.")
)
res3 <- call_llm(
messages = convo2,
stop = c(".")
)
cat(res3)
# 3d. Multi-message via factory interface
ScopedLLM <- call_llm(provider = "openai", temperature = 0.3)
chat_ctx <- list(
list(role = "system", content = "You are a math tutor.")
)
ans1 <- ScopedLLM(messages = chat_ctx, prompt = "Solve 2+2.")
cat(ans1)
ans2 <- ScopedLLM("What about 10*10?")
cat(ans2)
} # }